alexa Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Wang Q, Guan Y, Wu Y, Chen H, Chen F,

Abstract Share this page

Abstract DREB transcription factors play key roles in plant stress signalling transduction pathway, they can specifically bind to DRE/CRT element (G/ACCGAC) and activate the expression of many stress inducible genes. Here, a novel rice DREB transcription factor, OsDREB1F, was cloned and characterised via subtractive suppression hybridisation (SSH) from upland rice. Expression analysis revealed that OsDREB1F gene was induced by salt, drought, cold stresses, and also ABA application, but not by pathogen, wound, and H2O2. Subcellular localization results indicated that OsDREB1F localizes in nucleus. Yeast activity assay demonstrated that OsDREB1F gene encodes a transcription activator, and can specifically bind to DRE/CRT but not to ABRE element. Transgenic plants harbouring OsDREB1F gene led to enhanced tolerance to salt, drought, and low temperature in both rice and Arabidopsis. The further characterisation of OsDREB1F-overexpressing Arabidopsis showed that, besides activating the expression of COR genes which contain DRE/CRT element in their upstream promoter regions, the expression of rd29B and RAB18 genes were also activated, suggested that OsDREB1F may also participate in ABA-dependent pathway. This article was published in Plant Mol Biol and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords