alexa Overview of the chemical ecology of benthic marine invertebrates along the western Antarctic peninsula.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): McClintock JB, Amsler CD, Baker BJ

Abstract Share this page

Abstract Thirteen years ago in a review that appeared in the American Zoologist, we presented the first survey of the chemical and ecological bioactivity of Antarctic shallow-water marine invertebrates. In essence, we reported that despite theoretical predictions to the contrary the incidence of chemical defenses among sessile and sluggish Antarctic marine invertebrates was widespread. Since that time we and others have significantly expanded upon the base of knowledge of Antarctic marine invertebrates' chemical ecology, both from the perspective of examining marine invertebrates in new, distinct geographic provinces, as well as broadening the evaluation of the ecological significance of secondary metabolites. Importantly, many of these studies have been framed within established theoretical constructs, particularly the Optimal Defense Theory. In the present article, we review the current knowledge of chemical ecology of benthic marine invertebrates comprising communities along the Western Antarctic Peninsula (WAP), a region of Antarctica that is both physically and biologically distinct from the rest of the continent. Our overview indicates that, similar to other regions of Antarctica, anti-predator chemical defenses are widespread among species occurring along the WAP. In some groups, such as the sponges, the incidence of chemical defenses against predation is comparable to, or even slightly higher than, that found in tropical marine systems. While there is substantial knowledge of the chemical defenses of benthic marine invertebrates against predators, much less is known about chemical anti-foulants. The sole survey conducted to date suggests that secondary metabolites in benthic sponges are likely to be important in the prevention of fouling by benthic diatoms, yet generally lack activity against marine bacteria. Our understanding of the sensory ecology of Antarctic benthic marine invertebrates, despite its great potential, remains in its infancy. For example, along the WAP, community-level non-consumptive effects occur when amphipods chemically sense fish predators and respond by seeking refuge in chemically-defended macroalgae. Such interactions may be important in releasing amphipods from predation pressure and facilitating their unusually high abundances along the WAP. Moreover, recent studies on the sensory biology of the Antarctic keystone sea star Odontaster validus indicate that chemotactile-mediated interactions between conspecifics and other sympatric predatory sea stars may have significant ramifications in structuring community dynamics. Finally, from a global environmental perspective, understanding how chemical ecology structures marine benthic communities along the WAP must increasingly be viewed in the context of the dramatic impacts of rapid climatic change now occurring in this biogeographic region. This article was published in Integr Comp Biol and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords