alexa Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions.
Cardiology

Cardiology

Journal of Hypertension: Open Access

Author(s): Stadtman ER

Abstract Share this page

Abstract Basic mechanisms that underlie the oxygen free radical-promoted oxidation of free amino acids and amino acid residues of proteins are derived from radiolysis studies. Results of these studies indicate that the most common pathway for the oxidation of simple aliphatic amino acids involves the hydroxyl radical-mediated abstraction of a hydrogen atom to form a carbon-centered radical at the alpha-position of the amino acid or amino acid residue in the polypeptide chain. Addition of O2 to the carbon-centered radicals leads to formation of peroxy radical derivatives, which upon decomposition lead to production of NH3 and alpha-ketoacids, or to production of NH3, CO2, and aldehydes or carboxylic acids containing one less carbon atom. As the number of carbon atoms in the amino acid is increased, hydrogen abstraction at other positions in the carbon chain becomes more important and leads either to the formation of hydroxy derivatives, or to amino acid cross-linked products as a consequence of carbon-centered radical recombination processes. alpha-Hydrogen abstraction plays a minor role in the oxidation of aromatic amino acids by radiolysis. Instead, the aromatic ring is the primary site of attack leading to hydroxy derivatives, to ring scission, and in the case of tyrosine to the formation of Tyr-Tyr cross-linked dimers. The basic pattern for the oxidation of amino acids by metal ion-catalyzed reactions (Fenton chemistry) is similar to the alpha-hydrogen abstraction pathway. But unlike the case of oxidation by radiolysis, this Fenton pathway is the major mechanism for the oxidation of all aliphatic amino acids, regardless of chain length, as well as for the oxidation of aromatic amino acids. Curiously, the Fe(III)-catalyzed oxidation of free amino acids is almost completely dependent upon the presence of bicarbonate ion, and is greatly stimulated by iron chelators at chelator/Fe(III) ratios less than 1.0, and is inhibited at chelator/Fe(III) ratios greater than 1.0. It is deduced that the most active catalytic complex is composed of two equivalents of HCO3-, an amino acid, and at least one equivalent of iron; however, two forms of iron, an iron-chelate and another form, must somehow be involved. In contrast to the situation with radiolysis, the aromatic rings of aromatic amino acids are only minor targets for metal-catalyzed reactions. All amino acid residues in proteins are subject to attack by hydroxyl radicals generated by ionizing radiation; however, the aromatic amino acids and sulfur-containing amino acids are most sensitive to oxidation.(ABSTRACT TRUNCATED AT 400 WORDS) This article was published in Annu Rev Biochem and referenced in Journal of Hypertension: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords