alexa Oxidative damage of DNA by the reaction of amino acid with methylglyoxal in the presence of Fe(III).
Infectious Diseases

Infectious Diseases

Journal of AIDS & Clinical Research

Author(s): Kang JH, Kang JH

Abstract Share this page

Abstract Methylglyoxal (MG) is an endogenous metabolite which is present in increased concentrations in diabetics and reacts with amino acids to form advanced glycation end products. DNA cleavage induced by the reaction of MG with lysine in the presence of Fe3+ was investigated. When plasmid DNA was incubated with MG and lysine in the presence of Fe3+, DNA strand breakage was proportional to MG and lysine concentrations. The formation of superoxide anion was detected during this reaction, and catalase, hydroxyl radical scavengers and iron chelator, desferrioxamine inhibited DNA cleavage. Deoxyribose assays showed that hydroxyl radicals were generated during the MG/lysine/Fe3+ reaction. These results suggest that superoxide anion and H2O2 may be generated from the glycation reaction between lysine with MG, and that Fe3+ probably participates in a Fenton's type reaction to produce hydroxyl radicals, which may cause DNA cleavage. This mechanism, in part, may provide an explanation for the deterioration of organs under diabetic conditions.
This article was published in Int J Biol Macromol and referenced in Journal of AIDS & Clinical Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version