alexa Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping.
Pathology

Pathology

Journal of Clinical & Experimental Pathology

Author(s): Misiaszek R, Crean C, Joffe A, Geacintov NE, Shafirovich V

Abstract Share this page

Abstract In living tissues under inflammatory conditions, superoxide radicals (O(2)*)) are generated and are known to cause oxidative DNA damage. However, the mechanisms of action are poorly understood. It is shown here that the combination of O(2)* with guanine neutral radicals, G(-H)* in single- or double-stranded oligodeoxyribonucleotides (rate constant of 4.7 +/- 1.0 x 10(8) m(-1) s(-1) in both cases), culminates in the formation of oxidatively modified guanine bases (major product, imidazolone; minor product, 8-oxo-7,8-dihydroguanine). The G(-H)* and O(2)* radicals were generated by intense 308 nm excimer laser pulses resulting in the one-electron oxidation and deprotonation of guanine in the 5'-d(CC[2AP]-TCGCTACC) strands and the trapping of the ejected electrons by molecular oxygen (Shafirovich, V., Dourandin, A., Huang, W., Luneva, N. P., and Geacintov, N. E. (2000) Phys. Chem. Chem. Phys. 2, 4399-4408). The addition of Cu,Zn-superoxide dismutase, known to react rapidly with superoxide, dramatically enhances the life-times of guanine radicals from 4 to 7 ms to 0.2-0.6 s in the presence of 5 microm superoxide dismutase. Oxygen-18 isotope labeling experiments reveal two pathways of 8-oxo-7,8-dihydroguanine formation including either addition of O(2)* to the C-8 position of G(-H)* (in the presence of oxygen), or the hydration of G(-H)* (in the absence of oxygen). The formation of the guanine lesions via combination of guanine and superoxide radicals is greatly reduced in the presence of typical antioxidants such as trolox and catechol that rapidly regenerate guanine by the reductive "repair" of G(-H)* radicals. The mechanistic aspects of the radical reactions that either regenerate undamaged guanine in DNA or lead to oxidatively modified guanine bases are discussed. This article was published in J Biol Chem and referenced in Journal of Clinical & Experimental Pathology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords