alexa Oxidative DNA damage is associated with intense noise exposure in the rat.
Medicine

Medicine

Otolaryngology: Open Access

Author(s): Van Campen LE, Murphy WJ, Franks JR, Mathias PI, Toraason MA

Abstract Share this page

Abstract Increasing evidence suggests that noise-induced hearing loss may be reduced or prevented with antioxidant therapy. Biochemical markers of reactive oxygen species (ROS)-induced damage can help elucidate possible treatment timing constraints. This study examined the time course of ROS damage following a 2-h, broad-band noise exposure resulting in permanent threshold shift in 35 Long-Evans rats. Cochlea, brain, liver, serum and urine were analyzed at 1, 3, 8, 72, and 672 h (28 days) after exposure. Oxidative DNA damage was assessed by measuring 8-hydroxy-2'-deoxyguanosine (8OHdG) by high performance liquid chromatography with electrochemical detection. Lipid peroxidation was measured via the thiobarbituric acid-reactive substances (TBARS) colorimetric assay for detection of aldehydes (e.g., malondialdehyde). Auditory brainstem response and distortion product otoacoustic emission thresholds showed progressive elevation for the 3- and 8-h groups, then notable recovery for the 72-h group, and some worsening for the 672-h group. 8OHdG was significantly elevated in cochlea in the 8-h group, and in brain and liver for the 72-h group. TBARS were significantly elevated in serum for the 72-h group. Based upon oxidative DNA damage present in cochlea following intense noise, we postulate that the first 8 h following exposure might be a critical period for antioxidant treatment.
This article was published in Hear Res and referenced in Otolaryngology: Open Access

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords