alexa Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Madamanchi NR, Hakim ZS, Runge MS

Abstract Share this page

Abstract Atherosclerosis is a multifactorial disease for which the molecular etiology of many of the risk factors is still unknown. As no single genetic marker or test accurately predicts cardiovascular death, phenotyping for markers of inflammation may identify the individuals at risk for vascular diseases. Reactive oxygen species (ROS) are key mediators of signaling pathways that underlie vascular inflammation in atherogenesis, starting from the initiation of fatty streak development through lesion progression to ultimate plaque rupture. Various animal models of atherosclerosis support the notion that ROS released from NAD(P)H oxidases, xanthine oxidase, lipoxygenases, and enhanced ROS production from dysfunctional mitochondrial respiratory chain indeed have a causatory role in atherosclerosis and other vascular diseases. Human investigations also support the oxidative stress hypothesis of atherogenesis. This is further supported by the observed impairment of vascular function and enhanced atherogenesis in animal models that have deficiencies in antioxidant enzymes. The importance of oxidative stress in atherosclerosis is further emphasized because of its role as a unifying mechanism across many vascular diseases. The main contraindicator for the role oxidative stress plays in atherosclerosis is the lack of effectiveness of antioxidants in reducing primary endpoints of cardiovascular death and morbidity. However, this lack of effectiveness by itself does not negate the existence or causatory role of oxidative stress in vascular disease. Lack of proven markers of oxidative stress, which could help to identify a subset of population that can benefit from antioxidant supplementation, and the complexity and subcellular localization of redox reactions, are among the factors responsible for the mixed outcomes in the use of antioxidants for the prevention of cardiovascular diseases. To better understand the role of oxidative stress in vascular diseases, future studies should be aimed at using advances in mouse and human genetics to define oxidative stress phenotypes and link phenotype with genotype. This article was published in J Thromb Haemost and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords