alexa Oxygen Rich Titania: A Dopant Free, High Temperature Stable, and Visible-Light Active AnatasePhotocatalyst.
Materials Science

Materials Science

Research & Reviews: Journal of Material Sciences

Author(s): Vinodkumar Etacheri, Michael K Seery, Steven J Hinder, Suresh C Pillai

Abstract Share this page

The simultaneous existence of visible light photocatalytic activity and high temperature anatase phase stability up to 900 °C in undoped TiO2 is reported for the first time. These properties are achieved by the in-situ generation of oxygen through the thermal decomposition of peroxo-titania complex (formed by the precursor modification with H2O2). Titania containing the highest amount of oxygen (16 H2O2-TiO2) retains 100% anatase phase even at 900 °C, where as the control sample exists as 100% rutile at this temperature. The same composition exhibits a six-fold and two-fold increase in visible light photocatalytic activities in comparison to the control sample and the standard photocatalyst Degussa P-25 respectively. Among the various para­meters affecting the photocatalytic action, such as band gap narrowing, textural properties, crystallite size, and anatase phase stability, band gap narrowing was identified as the major factor responsible for the visible light photocatalytic activity. Increased Ti–O–Ti bond strength and upward shifting of the valence band (VB) maximum, which is responsible for the high temperature stability and visible light activity respectively, are identified from FT–IR, XPS, and photoluminescence (PL) spectroscopic studies. It is therefore proposed that the oxygen excess defects present in these titania samples are responsible for the high temperature stability and enhanced visible light photocatalytic activities.

This article was published in AdvFunct Mater and referenced in Research & Reviews: Journal of Material Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version