alexa p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Esteller M, CordonCardo C, Corn PG, Meltzer SJ, Pohar KS,

Abstract Share this page

Abstract The INK4a/ARF locus encodes two distinct tumor suppressors, p16INK4a and p14ARF. Although the contribution of p16INK4a to human tumorigenesis through point mutation, deletion, and hypermethylation has been widely documented, little is known about specific p14ARF lesions and their consequences. Recent data indicate that p14ARF suffers inactivation by promoter hypermethylation in colorectal cancer cells. Because it is known that p14ARF prevents MDM2 nucleocytoplasmic shuttling and thus stabilizes p53 by attenuating MDM2-mediated degradation, we studied the relationship of p14ARF epigenetic silencing to the expression and localization of MDM2 and p53. Cancer cell lines with an unmethylated p14ARF promoter showed strong nuclear expression of MDM2, whereas in a colorectal cell line with p14ARF hypermethylation-associated inactivation, MDM2 protein was also seen in the cytosol. Treatment with the demethylating agent 5-aza-2'-deoxycytidine was able to reinternalize MDM2 to the nucleus, and p53 expression was restored. No apparent changes in retinoblastoma localization were observed. We also studied the profile of p14ARF promoter hypermethylation in an extensive collection of 559 human primary tumors of different cell types, observing that in colorectal, gastric, renal, esophageal, and endometrial neoplasms and gliomas, aberrant methylation of p14ARF was a relatively common epigenetic event. MDM2 expression patterns revealed that lack of p14ARF promoter hypermethylation was associated with tumors showing exclusive nuclear MDM2 staining, whereas MDM2 cytosolic staining was frequently observed in neoplasms with aberrant p14ARF methylation. Taken together, these data support that epigenetic silencing of p14ARF by promoter hypermethylation is a key mechanism in the disturbance of the MDM2 nuclear localization in human cancer.
This article was published in Cancer Res and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords