alexa P53 and MDM2 co-expression in tobacco and betel chewing-associated oral squamous cell carcinomas.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Shwe M, Chiguchi G, Yamada S, Nakajima T, Maung KK,

Abstract Share this page

Abstract Oral cancers of tobacco and betel chewers represents a unique in-vivo model to understand the genotoxic effect of tobacco and betel carcinogens on oncogenes and tumor suppressor genes. Coordinated interactions of p53 and MDM2 play an important role in regulation of critical growth control gene following exposure to DNA damaging agents. The purpose of this study is to determine if the tumor suppressor function of p53 is inactivated by mutation or other alternative mechanisms in carcinogen-induced oral squamous cell carcinoma (SCC), and to investigate the clinicopathological significance of p53 and MDM2 expression. The p53 mutation in oral SCC of tobacco and betel chewers (n=40) was detected by polymerase chain reaction - single strand conformation polymorphism (PCR-SSCP) analysis and immunohistochemistry (IHC) was done to investigate p53 and MDM2 proteins overexpression. The incidence of p53 mutation was relatively low (17.5\%), but there was a high prevalence of MDM2 overexpression (72.5\%). In the total of 40 cases, IHC phenotype showed p53 positive immunostaining with MDM2 positive immunostaining (p53+/MDM2+) 62.5\%, p53 negative immunostaining with MDM2 negative immunostaining (p53-/MDM2-) 15\%, p53 positive immunostaining with MDM2 negative immunostaining (p53+/MDM2-) 12.5\%, and p53 negative immunostaining with MDM2 positive immunostaining (p53-/MDM2+) 10\%. A significant correlation was found between MDM2 and p53 overexpression (p=0.0289). Moreover, p53+/MDM2+ phenotype was significantly associated with poorly differentiated tumors (p= 0.0007). These results conclude that other factors than p53 mutation is likely to be the targets of tobacco/betel carcinogens and MDM2 may play an important role in tobacco/betel chewing-related oral SCCs. Overexpression of MDM2 protein may constitute an alternative mechanism for p53 inactivation.
This article was published in J Med Dent Sci and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected].com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords