alexa PA-1, a novel synthesized pyrrolizidine alkaloid, inhibits the growth of Escherichia coli and Staphylococcus aureus by damaging the cell membrane.
General Science

General Science

Biological Systems: Open Access

Author(s): Li N, Tan SN, Cui J, Guo N, Wang W,

Abstract Share this page

Abstract In the present study, antimicrobial activity and mode of a novel synthesized pyrrolizidine alkaloid (PA-1) were investigated. PA-1 exhibited predominantly strong antibacterial activity toward six bacteria tested with minimal inhibitory concentration (MIC) values ranging from 0.0039 to 0.025 mg ml(-1). The time-kill assay indicated that PA-1 killed Escherichia coli and Staphylococcus aureus completely at 2MIC (minimum bactericidal concentration) within 8 h. Besides, PA-1-induced death rates of most sensitive strains (E. coli, 97.80\% and S. aureus, 96.24\%) were analyzed by flow cytometry. A combination of approaches was used to verify the membrane damage of E. coli and S. aureus. Results showed that release of 260 nm absorbing materials quickly increased after PA-1 treatment. PA-1 also rapidly promoted the uptake of crystal violet from 24.52 to 97.12\% for E. coli and from 19.68 to 97.63\% for S. aureus when the concentrations were changed from MIC to 4MIC. Furthermore, the cellular membrane damages were testified by the significant increase of fluorescence intensity and decrease of membrane potential. Finally, lecithin and phosphate groups were applied to search the possibly targets on the cytoplasmic membrane. Results showed that PA-1 acted on cytoplasmic membrane phospholipids and phosphate groups of S. aureus but not of E. coli. In conclusion, the novel synthesized PA-1 exerted its antibacterial activity by acting on membrane phospholipids and phosphate groups and then damaging the structures of cellular membrane, which finally led to cell death. This article was published in J Antibiot (Tokyo) and referenced in Biological Systems: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords