alexa Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

International Journal of Physical Medicine & Rehabilitation

Author(s): Penhune VB, Steele CJ

Abstract Share this page

Abstract When learning a new motor sequence, we must execute the correct order of movements while simultaneously optimizing sensorimotor parameters such as trajectory, timing, velocity and force. Neurophysiological studies in animals and humans have identified the major brain regions involved in sequence learning, including the motor cortex (M1), basal ganglia (BG) and cerebellum. Current models link these regions to different stages of learning (early vs. late) or different components of performance (spatial vs. sensorimotor). At the same time, research in motor control has given rise to the concept that internal models at different levels of the motor system may contribute to learning. The goal of this review is to develop a new framework for motor sequence learning that combines stage and component models within the context of internal models. To do this, we review behavioral and neuroimaging studies in humans and neurophysiological studies in animals. Based on this evidence, we present a model proposing that sequence learning is underwritten by parallel, interacting processes, including internal model formation and sequence representation, that are instantiated in specific cerebellar, BG or M1 mechanisms depending on task demands and the stage of learning. The striatal system learns predictive stimulus-response associations and is critical for motor chunking. The role of the cerebellum is to acquire the optimal internal model for sequence performance in a particular context, and to contribute to error correction and control of on-going movement. M1 acts to store the representation of a learned sequence, likely as part of a distributed network including the parietal lobe and premotor cortex. Copyright © 2011 Elsevier B.V. All rights reserved. This article was published in Behav Brain Res and referenced in International Journal of Physical Medicine & Rehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version