alexa Parallel excitation in the human brain at 9.4 T counteracting k-space errors with RF pulse design.
Oncology

Oncology

OMICS Journal of Radiology

Author(s): Wu X, Vaughan JT, Uurbil K, Van de Moortele PF

Abstract Share this page

Abstract Multidimensional spatially selective radiofrequency (RF) pulses have been proposed as a method to mitigate transmit B1 inhomogeneity in MR experiments. These RF pulses, however, have been considered impractical for many years because they typically require very long RF pulse durations. The recent development of parallel excitation techniques makes it possible to design multidimensional RF pulses that are short enough for use in actual experiments. However, hardware and experimental imperfections can still severely alter the excitation patterns obtained with these accelerated pulses. In this note, we report at 9.4 T on a human eight-channel transmit system, substantial improvements in two-dimensional excitation pattern accuracy obtained when measuring k-space trajectories prior to parallel transmit RF pulse design (acceleration x4). Excitation patterns based on numerical simulations closely reproducing the experimental conditions were in good agreement with the experimental results.
This article was published in Magn Reson Med and referenced in OMICS Journal of Radiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords