alexa Parameter study for child injury mitigation in near-side impacts through FE simulations.
Engineering

Engineering

Journal of Applied Mechanical Engineering

Author(s): Andersson M, Pipkorn B, Lvsund P

Abstract Share this page

Abstract OBJECTIVE: The objective of this study is to investigate the effects of crash-related car parameters on head and chest injury measures for 3- and 12-year-old children in near-side impacts. METHODS: The evaluation was made using a model of a complete passenger car that was impacted laterally by a barrier. The car model was validated in 2 crash conditions: the Insurance Institute for Highway Safety (IIHS) and the US New Car Assessment Program (NCAP) side impact tests. The Small Side Impact Dummy (SID-IIs) and the human body model 3 (HBM3) (Total HUman Model for Safety [THUMS] 3-year-old) finite element models were used for the parametric investigation (HBM3 on a booster). The car parameters were as follows: vehicle mass, side impact structure stiffness, a head air bag, a thorax-pelvis air bag, and a seat belt with pretensioner. The studied dependent variables were as follows: resultant head linear acceleration, resultant head rotational acceleration, chest viscous criterion, rib deflection, and relative velocity at head impact. The chest measurements were only considered for the SID-IIs. RESULTS: The head air bag had the greatest effect on the head measurements for both of the occupant models. On average, it reduced the peak head linear acceleration by 54 g for the HBM3 and 78 g for the SID-IIs. The seat belt had the second greatest effect on the head measurements; the peak head linear accelerations were reduced on average by 39 g (HBM3) and 44 g (SID-IIs). The high stiffness side structure increased the SID-IIs' head acceleration, whereas it had marginal effect on the HBM3. The vehicle mass had a marginal effect on SID-IIs' head accelerations, whereas the lower vehicle mass caused 18 g higher head acceleration for HBM3 and the greatest rotational acceleration. The thorax-pelvis air bag, vehicle mass, and seat belt pretensioner affected the chest measurements the most. The presence of a thorax-pelvis air bag, high vehicle mass, and a seat belt pretensioner all reduced the chest viscous criterion (VC) and peak rib deflection in the SID-IIs. CONCLUSIONS: The head and thorax-pelvis air bags have the potential to reduce injury measurements for both the SID-IIs and the HBM3, provided that the air bag properties are designed to consider these occupant sizes also. The seat belt pretensioner is also effective, provided that the lateral translation of the torso is managed by other features. The importance of lateral movement management is greater the smaller the occupant is. Light vehicles require interior restraint systems of higher performance than heavy vehicles do to achieve the same level of injury measures for a given side structure. Copyright © 2012 Taylor & Francis Group, LLC This article was published in Traffic Inj Prev and referenced in Journal of Applied Mechanical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version