alexa Parameters affecting the loss of ganglion cells of the retina following ablations of striate cortex in primates.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Weller RE, Kaas JH

Abstract Share this page

Abstract Partial lesions of striate cortex were made in newborn and adolescent or young adult macaque monkeys, one newborn squirrel monkey, and adult squirrel and owl monkeys. After survival times ranging from 3 1/2 weeks to 8 years, the retinas were examined for transneuronal retrograde ganglion cell loss and retinal projections to the dorsal lateral geniculate nucleus, and other targets were examined for changes. After lesions in infant macaque monkeys and long postoperative survivals, nearly 80\% of the ganglion cells were lost in the altered portions of the retinas. The degeneration appeared to be exclusively of ganglion cells projecting to the parvocellular layers of the lateral geniculate nucleus, and the loss of this class of cell appeared to be complete or nearly complete for the affected portions of the retina. Cases with shorter survivals showed that nine-tenths of the potential loss occurred within 6 months, and about half of the potential loss took place within one month. In cases where lesions were placed in adolescent and young adult macaque monkeys, the loss also was of ganglion cells projecting to the parvocellular layers. However, the rate of cell loss was slower so that little or no cell loss was apparent after six months, and only one-third to three-fourths of the potential loss occurred within 12-14 months. A cell loss of 22\% was measured in the altered portions of the retina of a squirrel monkey lesioned as an infant and surviving for 6 months, but no regions of ganglion cell loss were apparent in the retinas of owl and squirrel monkeys lesioned as adults and surviving as long as two or more years. We conclude that nearly 80\% of the ganglion cells project to the parvocellular layers in macaque monkeys, and that the ultimate survival of these ganglion cells depends on the presence of target neurons in the parvocellular layers. Age is important in that the loss of ganglion cells proceeds rapidly in infant macaque monkeys, but slowly in older animals. Infant New World monkeys, judging from one squirrel monkey, are also susceptible to ganglion cell loss, although apparently at a rate comparable to older macaque monkeys. Finally, adult New World monkeys do not appear to be susceptible to ganglion cell loss. These age and species differences in rates of loss and susceptibility to loss challenge a "sustaining collateral" hypothesis proposed earlier (Weller et al., 1979), and suggest alternatives and modifications.
This article was published in Vis Neurosci and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords