alexa Paranormed sequence spaces generated by infinite matrices
Mathematics

Mathematics

Journal of Applied & Computational Mathematics

Author(s): I J Maddox

Abstract Share this page

A paranormed space X = (X, g) is a topological linear space in which the topology is given by paranorm ga real subadditive function on X such that g(θ) = 0, g(x) = g(−x) and such that multiplication is continuous. In the above, θ is the zero in the complex linear space X and continuity of multiplication means that λn → λ, xnx(i.e. g(xnx) → 0) imply λnxn → λx, for scalars λ and vectors x. We shall use the term semimetric function to describe a real subadditive function g on X such that g(θ) = 0, g(x) = g(−x). Two familiar paranormed sequence spaces, which have been extensively studied (3), are l(p) and m(p). For a given sequence p = (gk) of strictly positive numbers, l;(p) is the set of all complex sequences x = (xk) such that and m(p) is the set of x such that sup Throughout, sums and suprema without limits are taken from 1 to ∞. Simons (3) considered only the case in which 0 < pk ≤ 1 so that natural paranorms would seem to be in m(p). In fact Simons showed that g1 was a paranorm for l(p), but that g2 did not satisfy the continuity of multiplication axiom.

This article was published in Mathematical Proceedings of the Cambridge Philosophical Society and referenced in Journal of Applied & Computational Mathematics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords