alexa Passaged human chondrocytes accumulate extracellular matrix when induced by bovine chondrocytes.

Journal of Bioengineering and Bioelectronics

Author(s): Ahmed N, Taylor DW, Wunder J, Nagy A, Gross AE,

Abstract Share this page

Abstract A source of sufficient number of cells is a major limiting factor for cartilage tissue engineering. To circumvent this problem, we developed a co-culture method to induce redifferentiation in bovine articular chondrocytes, which had undergone dedifferentiation following serial passage in monolayer culture. In this study we determine whether human osteoarthritic (OA) and non-diseased passaged dedifferentiated chondrocytes will respond similarly. Human passaged chondrocytes were co-cultured for 4 weeks with primary bovine chondrocytes and their redifferentiation status was determined. Afterwards the cells were cultured either independently or in co-culture with cryopreserved passaged cells for functional analysis. The co-culture of passaged cells with primary chondrocytes resulted in reversion of their phenotype towards articular chondrocytes, as shown by increased gene expression of type II collagen and COMP, decreased type I collagen expression and extracellular matrix formation in vitro. Furthermore, this redifferentiation was stable, as those cells not only formed hyaline-like cartilage tissue when grown on their own but also they could induce redifferentiation of passaged chondrocytes in co-culture. These data suggest that it may be possible to use autologous chondrocytes obtained from osteoarthritic cartilage to form tissue suitable to use for cartilage repair. Copyright (c) 2009 John Wiley & Sons, Ltd. This article was published in J Tissue Eng Regen Med and referenced in Journal of Bioengineering and Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords