alexa Pathway analysis identifies perturbation of genetic networks induced by butyrate in a bovine kidney epithelial cell line.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Li CJ, Li RW, Wang YH, Elsasser TH

Abstract Share this page

Abstract Ruminant species have evolved to metabolize the short-chain volatile fatty acids (VFA), acetate, propionate, and butyrate, to fulfill up to 70\% of their nutrient energy requirements. The inherent VFA dependence of ruminant cells was exploited to add a level of increased sensitivity to the study of the role of butyrate gene-response elements in regulatory biochemical pathways. Global gene expression profiles of the bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The detailed mechanisms by which butyrate induces cell growth arrest and apoptosis were analyzed using the Ingenuity Pathways Knowledge Base. The functional category and pathway analyses of the microarray data revealed that four canonical pathways (Cell cycles: G2/M DNA damage checkpoint, and pyrimidine metabolism; G1/S checkpoint regulation and purine metabolism) were significantly perturbed. The biologically relevant networks and pathways of these genes were also identified. IGF2, TGFB1, TP53, E2F4, and CDC2 were established as being centered in these genomic networks. The present findings provide a basis for understanding the full range of the biological roles and the molecular mechanisms that butyrate may play in animal cell growth, proliferation, and energy metabolisms. This article was published in Funct Integr Genomics and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version