alexa Patterns of genetic diversity in outcrossing and selfing populations of Arabidopsis lyrata.
Environmental Sciences

Environmental Sciences

Journal of Ecosystem & Ecography

Author(s): Mable BK, Adam A

Abstract Share this page

Abstract Arabidopsis lyrata is normally considered an obligately outcrossing species with a strong self-incompatibility system, but a shift in mating system towards inbreeding has been found in some North American populations (subspecies A. lyrata ssp. lyrata). This study provides a survey of the Great Lakes region of Canada to determine the extent of this mating system variation and how outcrossing rates are related to current population density, geographical distribution, and genetic diversity. Based on variation at microsatellite markers (progeny arrays to estimate multilocus outcrossing rates and population samples to estimate diversity measures) and controlled greenhouse pollinations, populations can be divided into two groups: (i) group A, consisting of individuals capable of setting selfed seed (including autogamous fruit set in the absence of pollinators), showing depressed outcrossing rates (T(m) = 0.2-0.6), heterozygosity (H(O) = 0.02-0.06) and genetic diversity (H(E) = 0.08-0.10); and (ii) group B, consisting of individuals that are predominantly self-incompatible (T(m) > 0.8), require pollinators for seeds set, and showing higher levels of heterozygosity (H(O) = 0.13-0.31) and diversity (H(E) = 0.19-0.410). Current population density is not related to the shift in mating system but does vary with latitude. Restricted gene flow among populations was evident among all but two populations (F(ST) = 0.11-0.8). Group A populations were more differentiated from one another (F(ST) = 0.78) than they were from group B populations (F(ST) = 0.59), with 41\% of the variation partitioned within populations, 47\% between populations, and 12\% between groups. No significant relationship was found between genetic and geographical distance. Results are discussed in the context of possible postglacial expansion scenarios in relation to loss of self-incompatibility. This article was published in Mol Ecol and referenced in Journal of Ecosystem & Ecography

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version