alexa PEDF-deficient mice exhibit an enhanced rate of retinal vascular expansion and are more sensitive to hyperoxia-mediated vessel obliteration.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Huang Q, Wang S, Sorenson CM, Sheibani N

Abstract Share this page

Abstract Pigment epithelium derived factor (PEDF) is an endogenous inhibitor of angiogenesis. However, its physiological role during vascular development and neovascularization remains elusive. Here we investigated the role of PEDF in normal postnatal vascularization of retina and retinal neovascularization during oxygen-induced ischemic retinopathy (OIR) using PEDF-deficient (PEDF-/-) mice. The beta-galactosidase staining of eye sections from PEDF-/- mice confirmed the expression pattern of endogenous PEDF previously reported in mouse retina. However, strongest staining was observed in the retinal outer plexiform layer. Retinal trypsin digests indicated that the ratio of endothelial cells (EC) to pericytes (PC) was significantly higher in PEDF-/- mice compared to wild type (PEDF+/+) mice at postnatal day 21 (P21). This was mainly attributed to increased numbers of EC in the absence of PEDF. There was no significant difference in the number of PC. We observed an increased rate of proliferation in retinal vasculature of PEDF-/- mice, which was somewhat compensated for by an increase in the rate of apoptosis. Staining of the retinal wholemounts and eye frozen sections indicated postnatal retinal vascularization expansion occurred at a faster rate in the absence of PEDF, and was more prominent at early time points (prior to P21). The retinal vascularization in PEDF+/+ mice reaches that of PEDF-/- mice such that no significant difference in vascular densities was observed by P42. Lack of PEDF had a minimal effect on the regression of hyaloid vasculature and VEGF levels. PEDF-/- mice also exhibited enhanced sensitivity to hyperoxia-mediated vessel obliteration during OIR compared to PEDF+/+ mice despite higher levels of VEGF. However, there was no significant difference in the degree of retinal neovascularization. Our studies indicate that PEDF is an important modulator of early postnatal retinal vascularization and in its absence retinal vascularization proceeds at a faster rate and is more susceptible to hyperoxia-mediated vessel obliteration.
This article was published in Exp Eye Res and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords