alexa Peptide-based inhibitors of protein-protein interactions.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Wjcik P, Berlicki

Abstract Share this page

Abstract Protein-protein interactions (PPIs) are key elements of several important biological processes and have emerged as valuable targets in medicinal chemistry. Importantly, numerous specific protein-protein interactions (e.g., p53-HDM2 and Bcl-2-BH3 domains) were found to be involved in the development of several diseases, including various types of cancer. In general, the discovery of new synthetic PPI inhibitors is a challenging task because protein surfaces have not evolved in a manner that allows for specific binding of low molecular weight compounds. Here, we review the discovery strategies for peptide-based PPI inhibitors. Although peptide-based drug candidates exhibit significant drawbacks (in particular, low proteolytic stability), modifications of either the side chains or backbone could provide molecules of interest. Moreover, due to the large molecular size of peptide-based compounds, the discovery of molecules that specifically interact with extended protein surfaces is possible. Two major strategies for constructing peptide-based PPI inhibitors are as follows: (a) cyclization (e.g., stapled peptides) and (b) modification of the backbone structure (e.g., β-peptides and peptoids). These approaches for constructing PPI inhibitors enhance both the inhibitory activity and pharmacokinetic properties compared with non-modified α-peptides. Copyright © 2015 Elsevier Ltd. All rights reserved. This article was published in Bioorg Med Chem Lett and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords