alexa [Performance of constructed wetland for municipal wastewater tertiary treatment: winter and summer comparison].


Journal of Civil & Environmental Engineering

Author(s): Xiang XM, Yang HT, Zhou JT, Yang FL, Wang ZH

Abstract Share this page

Abstract An improved three-stage vertical flow constructed wetland (CW) was used for tertiary treatment of effluent from two typical Dalian municipal wastewater treatment plants. The experiments were carried out under ambient condition in Dalian for the whole year. Performances of the CW for COD, TN, NH4(+) -N and TP removal in summer (Jun.-Aug.), winter (Nov.-Jan. the second year) and spring (Feb.-Apr.) were compared. In summer, the removal rates of COD, TN, NH4(+) -N and TP reached 88.5\%, 76\%, 100\% and 98\%, respectively. While in winter they reached 88\%, 85.3\%, 86.4\% and 97\%, respectively. In spring, the removal rates reached 87.7\%, 76.7\%, 70.3\% and 95.5\%, respectively. The effluent water quality for summer, winter and spring were: COD 2.8, 3.8 and 3.9 mg x L(-1), respectively; TP 0.02, 0.05, and 0.07 mg x L(-1), respectively; TN 6.8, 2.9, and 9.2 mg x L(-1), respectively; NH4(+)-N 0.01, 0.3, and 8.1 mg x L(-1), respectively. Results showed good performance of CW for Dalian municipal wastewater tertiary treatment, especially for COD and TP removal. The effluent COD and TP meet the needs of Environmental Quality Standard for Surface Water (GB 3838-2002) III, whereas the effluent TN and NH4(+)- N meet the needs of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) class I A and B, separately. The pollutant removal loads in summer, winter and spring were as flow: COD 4.9, 5.1, and 5.0 g x (m2 x d)(-1); TN 3.4, 3.0, and 5.5 g x (m2 x d)(-1); NH4(+) -N 0.2, 0.6, and 3.7 g x (m2 x d)(-1); TP 0.15, 0.30, and 0.28 g(m2 x d)(-1). It is indicated that no significant influence of seasons on pollutant removal is found by comparing the removal rates as well as pollutant removal loads in different seasons, however, the removal of NH4(+) -N and TN in CW is mainly influenced by influent pollutant loads.
This article was published in Huan Jing Ke Xue and referenced in Journal of Civil & Environmental Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version