alexa Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone.
Dentistry

Dentistry

Dentistry

Author(s): Nevins M, Camelo M, Nevins ML, Schenk RK, Lynch SE

Abstract Share this page

Abstract BACKGROUND: Purified recombinant human platelet-derived growth factor BB (rhPDGF-BB) is a potent wound healing growth factor and stimulator of the proliferation and recruitment of both periodontal ligament (PDL) and bone cells. The hypothesis tested in this study was that application of rhPDGF-BB incorporated in bone allograft would induce regeneration of a complete new attachment apparatus, including bone, periodontal ligament, and cementum in human interproximal intrabony defects and molar Class II furcation lesions. METHODS: Nine adult patients (15 sites) with advanced periodontitis exhibiting at least one tooth requiring extraction due to an extensive interproximal intrabony and/or molar Class II furcation defect were entered into the study. Eleven defects were randomly selected to receive rhPDGF-BB. Following full-thickness flap reflection and initial debridement, the tooth roots were notched at the apical extent of the calculus, the osseous defects were thoroughly debrided, and the tooth root(s) were planed/prepared. The osseous defects were then filled with demineralized freeze-dried bone allograft (DFDBA) saturated with one of three concentrations of rhPDGF-BB (0.5 mg/ml, 1.0 mg/ml, or 5.0 mg/ml). Concurrently, four interproximal defects were treated with a well accepted commercially available graft (anorganic bovine bone in collagen, ABB-C) and a bilayer collagen membrane. Radiographs, clinical probing depths, and attachment levels were obtained preoperatively (at baseline) and 9 months later. At 9 months postoperatively, the study tooth and surrounding tissues were removed en bloc. Clinical and radiographic data were analyzed for change from baseline by defect type and PDGF concentration. The histologic specimens were analyzed for the presence of regeneration of a complete new attachment apparatus coronal to the reference notch. RESULTS: The post-surgical wound rapidly healed and was characterized by firm, pink gingivae within 7 to 10 days of surgery. There were no unfavorable tissue reactions or other safety concerns associated with the treatments throughout the course of the study. In rhPDGF/allograft sites, the vertical probing depth (vPD) reduction for interproximal defects was 6.42 +/- 1.69 mm (mean +/- SD) and clinical attachment level (CAL) gain was 6.17 +/- 1.94 mm (both P < 0.01). Radiographic fill was 2.14 +/- 0.85 mm. Sites filled with ABB-C had a PD reduction and CAL gain of 5.75 +/- 0.5 and 5.25 +/- 1.71, respectively. Furcation defects treated with rhPDGF/allograft exhibited a mean horizontal and vertical PD reduction of 3.40 +/- 0.55 mm (P < 0.001) and 4.00 +/- 1.58 mm (P < 0.005), respectively. The CAL gain for furcation defects was 3.2 +/- 2.17 mm (P < 0.030). Histologic evaluation revealed regeneration of a complete periodontal attachment apparatus, including new cementum, PDL, and bone coronal to the root notch in four of the six interproximal defects and all evaluable (four of four) furcation defects treated with PDGF. Two of the four interproximal intrabony defects treated with ABB-C and membrane exhibited regeneration. CONCLUSIONS: Use of purified rhPDGF-BB mixed with bone allograft results in robust periodontal regeneration in both Class II furcations and interproximal intrabony defects. This is the first report of periodontal regeneration demonstrated histologically in human Class II furcation defects. This article was published in J Periodontol and referenced in Dentistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 39th Asia-Pacific Dental and Oral Care Congress
    October 26-28, 2017 Osaka, Japan
  • American World Dentistry
    November 13-14, 2017 San Antonio, U
  • 39th South American Dental Congress
    Dec 4-6,2017 Sao Paulo,Brazil

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords