alexa Peroxidase- and nitrite-dependent metabolism of the anthracycline anticancer agents daunorubicin and doxorubicin.
Biochemistry

Biochemistry

Enzyme Engineering

Author(s): Reszka KJ, McCormick ML, Britigan BE

Abstract Share this page

Abstract Oxidation of the anticancer anthracyclines doxorubicin (DXR) and daunorubicin (DNR) by lactoperoxidase(LPO)/H(2)O(2) and horseradish peroxidase(HRP)/H(2)O(2) systems in the presence and absence of nitrite (NO(2)(-)) has been investigated using spectrophotometric and EPR techniques. We report that LPO/H(2)O(2)/NO(2)(-) causes rapid and irreversible loss of anthracyclines' absorption bands, suggesting oxidative degradation of their chromophores. Both the initial rate and the extent of oxidation are dependent on both NO(2)(-) concentration and pH. The initial rate decreases when the pH is changed from 7 to 5, and the reaction virtually stops at pH 5. Oxidation of a model hydroquinone compound, 2,5-di-tert-butylhydroquinone, by LPO/H(2)O(2) is also dependent on NO(2)(-); however, in contrast to DNR and DXR, this oxidation is most efficient at pH 5, indicating that LPO/H(2)O(2)/NO(2)(-) is capable of efficiently oxidizing simple hydroquinones even in the neutral form. Oxidation of anthracyclines by HRP/H(2)O(2)/NO(2)(-) is substantially less efficient relative to that by LPO/H(2)O(2)/NO(2)(-) at either pH 5 or pH 7, most likely due to the lower rate of NO(2)(-) metabolism by HRP/H(2)O(2). EPR measurements show that interaction of anthracyclines and 2,5-di-tert-butylhydroquinone with LPO/H(2)O(2)/NO(2)(-) generates the corresponding semiquinone radicals presumably via one-electron oxidation of their hydroquinone moieties. The possible role of the (*)NO(2) radical, a putative LPO metabolite of NO(2)(-), in oxidation of these compounds is discussed. Because in vivo the anthracyclines may co-localize with peroxidases, H(2)O(2), and NO(2)(-) in tissues, their oxidation via the proposed mechanism is likely. These observations reveal a novel, peroxidase- and nitrite-dependent mechanism for the oxidative transformation of the anticancer anthracyclines, which may be pertinent to their biological activities in vivo.
This article was published in Biochemistry and referenced in Enzyme Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Genetic and Protein Engineering
    Nov 02-Nov 03, 2017 Las Vegas, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords