alexa Peroxidase-mediated mechanisms are involved in the melanocytotoxic and melanogenesis-inhibiting effects of chemical agents.


Dermatology and Dermatologic Diseases

Author(s): Kasraee B, Kasraee B

Abstract Share this page

Abstract Melanogenesis is based on the enzymatic conversion of the amino acid tyrosine, through a series of intermediates, to melanin pigments. The nature of the enzymes involved in the different steps of melanogenesis has been intensely debated. However, it is now believed that tyrosinase is responsible for the conversion of tyrosine to dopa and of dopa to dopaquinone, and that peroxidase accomplishes the oxidative polymerization of the eventually formed indoles to eumelanin pigments. Some very few investigators have also considered a main role for peroxidase in initiating melanogenesis. At present, most different hypotheses are focused on tyrosinase-mediated mechanisms to elucidate the melanocytotoxic and depigmenting activities of chemicals. However, many properties of these agents cannot be explained by such mechanisms. Most of the melanocytotoxic agents (e.g. hydroquinone, catechols, butylated hydroxyanisole) can be converted to cytotoxic species, such as quinones, by the peroxidase-H(2)O(2) system. On the other hand, many of the melanogenesis inhibitors which are not known to inhibit tyrosinase (e.g. glucocorticoids, ascorbic acid, indomethacin) have the capacity to strongly inhibit peroxidase activity. We have proposed that peroxidase-mediated mechanisms, in addition to or in several instances rather than tyrosinase-mediated mechanisms, can explain the melanocytotoxic and depigmenting properties of such agents. Copyright 2002 S. Karger AG, Basel This article was published in Dermatology and referenced in Dermatology and Dermatologic Diseases

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version