alexa Persimmon tannin accounts for hypolipidemic effects of persimmon through activating of AMPK and suppressing NF-κB activation and inflammatory responses in high-fat diet rats.
Pharmaceutical Sciences

Pharmaceutical Sciences

Medicinal & Aromatic Plants

Author(s): Zou B, Ge ZZ, Zhang Y, Du J, Xu Z,

Abstract Share this page

Abstract The present study was to investigate whether high molecular weight persimmon tannin (HMWPT) is the main component associated with the anti-hyperlipidemic effect of consuming persimmon and its underlying mechanism. Male wistar rats were given a basic diet (control), a high-fat diet, a high-fat diet plus 0.5\% of HMWPT or 4.2\% of lyophilized fresh persimmon fruit (with the same diet HMWPT content in the two groups) for 9 weeks. Administration of HMWPT or persimmon fruit significantly (p < 0.05) lowered serum triglycerides and free fatty acids, enhanced the excretion of triglycerides, cholesterol and bile acids, and improved hepatic steatosis in rats fed a high-fat diet. Dietary HMWPT or persimmon fruit significantly decreased the protein levels of fatty acid synthase (FAS), and stimulated AMP-activated protein kinase (AMPK) phosphorylation and down-regulated genes involved in lipogenesis, including transcriptional factor sterol regulatory element binding protein 1 (SREBP1) and acetyl CoA carboxylase (ACC). In addition, the expression of proteins involved in fatty acid oxidation, such as carnitine palmitoyltransferase-1 (CPT-1), was notably up-regulated. Furthermore, HMWPT and persimmon fruit suppressed inflammatory cytokines such as tumor necrosis factor α (TNFα) and C-reactive protein (CRP) and the protein level of nuclear factor-kappa B (NFκB) in the liver. Taken together, our findings demonstrated that HMWPT reproduced the anti-hyperlipidemic effects of persimmon fruit, and was a pivotal constituent of persimmon fruit accounting for prevention of liver steatosis and its progression to nonalcoholic steatohepatitis (NASH) by activation of the AMPK and regulation of its downstream targets, suppressing NF-κB activation and inflammatory responses, and inhibiting lipids and bile acid absorption. This article was published in Food Funct and referenced in Medicinal & Aromatic Plants

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords