alexa Pharmacological studies on synthetic flavonoids: comparison with diazepam.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Griebel G, Perrault G, Tan S, Schoemaker H, Sanger DJ

Abstract Share this page

Abstract The present experiments compared the central BZ-omega binding characteristics and pharmacological profiles of two synthetic flavonoids (6-bromoflavone and 6-bromo-3'-nitroflavone) with those of the benzodiazepine (BZ) diazepam. In vitro experiments showed that while diazepam displaced [3H]flumazenil binding to the GABA(A) receptor in membranes from rat cerebellum and spinal cord, two brain areas enriched in the BZ-omega1 and BZ-omega2 receptor subtypes, with nearly equivalent half maximally effective concentrations, 6-bromo-3'-nitroflavone was somewhat more potent in displacing [3H]flumazenil binding to membranes from rat cerebellum (IC50 = 31 nM) than from spinal cord (IC50 = 120 nM), indicating selectivity for the BZ-omega1 receptor subtype. 6-Bromoflavone displayed weak (IC50 = 970 nM) affinity for the BZ-omega1 and no affinity for the BZ-omega2 (IC50 > 1000 nM) receptor subtypes. Diazepam, but not the synthetic flavonoids increased the latency to clonic seizures produced by isoniazid, thereby indicating that neither 6-bromoflavone nor 6-bromo-3'-nitroflavone display detectable intrinsic activity at GABA(A) receptors in vivo. Results from two conflict tests in rats showed that 6-bromoflavone (3-10 mg/kg) and 6-bromo-3'-nitroflavone (0.3-1 mg/kg) elicited anxiolytic-like activity in the punished drinking test, while both drugs were inactive in the punished lever pressing test. The positive effects displayed by the synthetic flavonoids in the punished drinking procedure were smaller than that of diazepam and were not antagonized by the BZ receptor antagonist flumazenil. In two models of exploratory activity, 6-bromoflavone (3-30 mg/kg) and 6-bromo-3'-nitroflavone (0.3-1 mg/kg) produced anxiolytic-like effects in the rat elevated plus-maze test, whereas both compounds failed to modify the behavior of mice in the light/dark test over a wide dose-range. The effects in the elevated plus-maze were antagonized by flumazenil. In the mouse defense test battery, where mice were confronted with a natural threat (a rat), 6-bromoflavone and 6-bromo-3'-nitroflavone failed to decrease flight reactions after the rat was introduced into the test area and risk assessment behavior displayed when subjects were constrained in a straight alley, and only weakly affected risk assessment of mice chased by the rat and defensive biting upon forced contact with the threat stimulus. In a drug discrimination experiment 6-bromoflavone and 6-bromo-3'-nitroflavone up to 30 and 3 mg/kg, respectively, did not substitute for the BZ chlordiazepoxide. Taken together, these results failed to demonstrate that the synthetic flavonoids 6-bromoflavone and 6-bromo-3'-nitroflavone possess anxiolytic-like properties similar or superior to that of diazepam, as was suggested previously. Furthermore, they question the contribution of BZ-omega receptors to the behavioral effects of 6-bromoflavone and 6-bromo-3'-nitroflavone.
This article was published in Neuropharmacology and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords