alexa Phenol degradation by Ralstonia eutropha: colorimetric determination of 2-hydroxymuconate semialdehyde accumulation to control feed strategy in fed-batch fermentations.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Lonard D, Youssef CB, Destruhaut C, Lindley ND, Queinnec I

Abstract Share this page

Abstract Phenol biodegradation by Ralstonia eutropha was modeled in different culture modes to assess phenol feeding in biotechnological depollution processes. The substrate-inhibited growth of R. eutropha was described by the Haldane equation with a Ks of 2 mg/L, a Ki of 350 mg/L and a mumax of 0.41 h(-1). Furthermore, growth in several culture modes was characterized by the appearance of a yellow color, due to production of a metabolic intermediate of the phenol catabolic pathway, 2-hydroxymuconic semialdehyde (2-hms) which was directly correlated to the growth rate and/or the phenol-degradation rate, because these two parameters are coupled (as seen by the constant growth yield of 0.68 g biomass/g phenol whatever the phenol concentration). This correlation between color appearance and metabolic activity was used to develop a control procedure for optimal phenol degradation. A mass-balance equation modeling approach combined with a filtering step using an extended Kalman filter enabled state variables of the biological system to be simulated. A PI controller, using the estimation of the phenol concentration provided by the modeling step, was then built to maintain the phenol concentration at a constant set-point of 0.1 g/L which corresponded to a constant specific growth rate of 0.3 h(-1), close to the maximal specific growth value of the strain. This monitoring strategy, validated for two fed-batch cultures, could lead, in self-cycling fermentation systems, to a productivity of more than 19 kg of phenol consumed/m(3)/d which is the highest value reported to date in the literature. This system of monitoring metabolic activity also protected the bacterial culture against toxicity problems due to the transient accumulation of phenol. Copyright 1999 John Wiley & Sons, Inc.
This article was published in Biotechnol Bioeng and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords