alexa Phn and Nag-like dioxygenases metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Tittabutr P, Cho IK, Li QX

Abstract Share this page

Abstract Burkholderia sp. C3 can transform polycyclic aromatic hydrocarbons (PAHs), a class of ubiquitous pollutants, through multiple pathways, indicating existence of multiple dioxygenases (Seo et al., in Biodegradation 18:123-131, 2006a). Both phn and nag-like genes in C3 were cloned and identified with the DNA sequence alignment and the gene organization in the clusters. When cloned and expressed in Escherichia coli, either the alpha- and beta-subunits of dioxygenase of the phn genes or the ferredoxin-, alpha- and beta-subunits of the nag-like genes transformed naphthalene, phenanthrene and dibenzothiophene but at different rates. The E. coli transformant containing the phn genes transformed phenanthrene faster than that containing the nag-like genes, which was consistent with higher transcription of the phnAc gene than the nagAc-like gene in C3 in response to phenanthrene. 1-Hydroxy-2-naphthanoic acid (1H2NA) and 2-hydroxy-1-naphthanoic acid (2H1NA) (3,4- and 1,2-dioxygenation metabolites of phenanthrene, respectively) were detected in the culture medium of the phn genes transformed E. coli. The concentration of 1H2NA was 262-fold higher than 2H1NA in the medium of the phn genes transformed E. coli. The results suggested that the phn genes play a major role in 1,2-/3,4-dioxygenation and 3,4-dioxygenation dominates. Twenty-eight PAH degradation-associated enzymes including those encoded by the nag-like and phn genes in phenanthrene-grown C3 cells were identified via alignment of amino acid sequences of the detected polypeptides with those in protein databases. The polypeptides were determined with nano liquid chromatography-ion trap mass spectrometry after tryptic in-gel digestion of the enzymes on 1D SDS-PAGE. This article was published in Biodegradation and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords