alexa Phosphatidylinositol 3-kinase and glycogen synthase kinase 3 regulate estrogen receptor-mediated transcription in neuronal cells.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Mendez P, GarciaSegura LM

Abstract Share this page

Abstract In addition to 17beta-estradiol binding, estrogen receptor (ER) transcriptional activity could be controlled by intracellular kinase signaling pathways activated by growth factors. In this report we present evidence suggesting that glycogen synthase kinase 3 (GSK3), an effector kinase of the phosphatidylinositol 3-kinase (PI3K) pathway, may affect ERalpha activity in N2a neuroblastoma cells. LiCl, sodium valproate, and SB415286, three inhibitors of GSK3, dose-dependently blocked ERalpha-mediated transcription. In contrast, overexpression of wild-type GSK3, but not of a mutant inactive form, increased ER-dependent gene expression. Pharmacological or genetic inhibition of the PI3K/Akt pathway, whose activity is inversely correlated with that of GSK3, increased ERalpha-mediated transcription, and this effect was blocked by GSK3 inhibitors. As in other cell types, IGF-I increased ERalpha activity in absence of estradiol by a mechanism independent of PI3K. In contrast, IGF-I decreased ERalpha activity in the presence of estradiol, and this effect was mediated by PI3K. We also observed a regulated interaction between beta-catenin, one of the main GSK3 nuclear targets, and ERalpha. Transfection with a nondegradable mutant of beta-catenin blocked the increase in ERalpha transcriptional activity induced by the PI3K inhibitor wortmannin, suggesting a role for beta-catenin in estrogen signaling. In addition, we investigated the regulation of ER protein levels as a potential mechanism for its regulation by the PI3K/GSK3 pathway; GSK3 blockade increased ERalpha protein stability, whereas PI3K inhibition decreased it. In summary, our findings suggest that ER-dependent gene expression in N2a cells is controlled by the PI3K/Akt/GSK3 signaling pathway. This article was published in Endocrinology and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords