alexa Phospholipase C inhibitor, U73122, releases intracellular Ca2+, potentiates Ins(1,4,5)P3-mediated Ca2+ release and directly activates ion channels in mouse pancreatic acinar cells.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Mogami H, Lloyd Mills C, Gallacher DV

Abstract Share this page

Abstract It is recognized in many cellular systems that the receptor/G-protein activation of phospholipase C and Ins(1,4,5)P3 production is the transduction pathway regulating the release of Ca2+ from internal stores. Ca2+ signals can now be monitored at the level of single cells but the biochemical detection of Ins(1,4,5)P3 cannot match this resolution. It is often difficult or impossible to directly attribute responses evoked in single cells by putative phospholipase C-coupled agonists to changes in Ins(1,4,5)P3 levels. U73122 is an aminosteroid that is reported to act as a specific inhibitor of phospholipase C and it has become an important tool in establishing the link between phospholipase C activation and cellular Ca2+ signalling. In the present study we use both patch-clamp electrophysiology and the imaging of fluorescent Ca2+ indicators to investigate the effect of U73122 in mouse pancreatic acinar cells. The study reveals that U73122 has effects other than the inhibition of phospholipase C. U73122 can directly activate ion channels. It can itself promote the release of Ca2+ from intracellular stores in permeabilized cells and in intact cells it triggers a release of Ca2+ that is initiated specifically at the secretory pole of these morphologically and functionally polarized cells. We also present evidence that U73122 can potentiate the response to Ins(1,4,5)P3; this is seen both in permeabilized cells and in patch-clamp protocols in which cells are internally dialysed with submaximal concentrations of Ins(1,4,5)P3. The effects of U73122 are therefore multiple and not specific for the inhibition of phospholipase C. Importantly, all the effects described influence Ca2+ signalling yet in many experimental protocols some of these effects can go unnoticed and might in error be attributed simply to the inhibition of Ins(1,4,5)P3 production.
This article was published in Biochem J and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords