alexa Photoactive ruthenium nitrosyls as NO donors: how to sensitize them toward visible light.


Enzyme Engineering

Author(s): Fry NL, Mascharak PK

Abstract Share this page

Abstract Nitric oxide (NO) can induce apoptosis (programmed cell death) at micromolar or higher doses. Although cell death via NO-induced apoptosis has been studied quite extensively, the targeted delivery of such doses of NO to infected or malignant tissues has not been achieved. The primary obstacle is indiscriminate NO release from typical systemic donors such as glycerin trinitrate: once administered, the drug travels throughout the body, and NO is released through a variety of enzymatic, redox, and pH-dependent pathways. Photosensitive NO donors have the ability to surmount this difficulty through the use of light as a localized stimulus for NO delivery. The potential of the method has prompted synthetic research efforts toward new NO donors for use as photopharmaceuticals in the treatment of infections and malignancies. Over the past few years, we have designed and synthesized several metal nitrosyls (NO complexes of metals) that rapidly release NO when exposed to low-power (milliwatt or greater) light of various wavelengths. Among them, the ruthenium nitrosyls exhibit exceptional stability in biological media. However, typical ruthenium nitrosyls release NO upon exposure to UV light, which is hardly suitable for phototherapy. By following a few novel synthetic strategies, we have overcome this problem and synthesized a variety of ruthenium nitrosyls that strongly absorb light in the 400-600-nm range and rapidly release NO under such illumination. In this Account, we describe our progress in designing photoactive ruthenium nitrosyls as visible-light-sensitive NO donors. Our research has shown that alteration of the ligands, in terms of (i) donor atoms, (ii) extent of conjugation, and (iii) substituents on the ligand frames, sensitizes the final ruthenium nitrosyls toward visible light in a predictable fashion. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations provide guidance in this "smart design" of ligands. We have also demonstrated that direct attachment of dye molecules as light-harvesting antennas also sensitize ruthenium nitrosyls to visible light, and TDDFT calculations provide insight into the mechanisms of sensitization by this technique. The fluorescence of the dye ligands makes these NO donors "trackable" within cellular matrices. Selected ruthenium nitrosyls have been used to deliver NO to cellular targets to induce apoptosis. Our open-design strategies allow the isolation of a variety of these ruthenium nitrosyls, depending on the choices of the ligand frames and dyes. These designed nitrosyls will thus be valuable in the future endeavor of synthesizing novel pharmaceuticals for phototherapy. This article was published in Acc Chem Res and referenced in Enzyme Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

  • Bozena Futoma-Koloch
    C3 component deposition on Salmonella O48 cells characterized by sialylated lipopolysaccharide and different pattern of outer membrane proteins
    PPT Version | PDF Version
  • Ildiko Molnar
    The role of tissue-specific type 2 5’-deiodinase enzyme activities in Graves’ orbitopathy and systemic sclerosis: a new candidate in thyroid autoimmunity
    PDF Version
  • Sumru Savas
    No relationship between lipoprotein-associated phospholipase A2, proinflammatory cytokines, and neopterin   in Alzheimer's disease
    PPT Version | PDF Version
  • Bonamali Pal
    Metal-TiO2 nano-photocatalysts for detoxification of toxic pesticides, dyes, polyaromatics pollutants and bacteria under UV-sunlight irradiation
    PPT Version | PDF Version
  • Guocheng Du
    One-step biosynthesis of α-keto acids by the L-amino acid deaminase: Biocatalyst construction and process optimization
    PPT Version | PDF Version
  • Heidi Schalchli
    Natural products of Anthracophyllum discolor: Ligninolytic enzymes and antifungal volatile compounds
    PPT Version | PDF Version
  • Mapitsi S Thantsha
    In vitro antagonistic effects of Listeria adhesion protein (LAP)-expressing Lactobacillus casei against Listeria monocytogenes and Salmonella Typhimurium Copenhagen
    PPT Version | PDF Version
  • Tibor Tot
    Multiparameter characterization of breast carcinoma: subgross, microscopy, proteins, and genes
    PPT Version | PDF Version
  • Monray Edward Williams
    Molecular validation of putative antimicrobial peptides for improved Human Immunodeficiency Virus diagnostics via HIV protein p24
    PPT Version | PDF Version
  • Kuna Yellamma
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Shigeomi Horito
    Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin
    PPT Version | PDF Version
  • Maria A. Miteva
    In silico screening to discover inhibitors of protein-protein interactions targeting angiogenesis
    PPT Version | PDF Version
  • Konrad Sandhoff
    Lysosomal & extracellular degradation of GlcCer: Protein & lipid modifiers
    PPT Version | PDF Version
  • Devathri Nanayakkara
    Context specific role of deubiquitylase enzyme, USP9X in oral squamous cell carcinoma
    PPT Version | PDF Version

Recommended Conferences

  • 3rd International Conference on Genetic and Protein Engineering
    Nov 02-Nov 03, 2017 Las Vegas, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version