alexa Photoinduced intramolecular charge transfer in 4-(dimethyl)aminobenzonitrile--a theoretical perspective.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Theoretical and Computational Science

Author(s): Rappoport D, Furche F

Abstract Share this page

Abstract Recent advances in time-dependent density functional theory (TDDFT) have led to computational methods that can predict properties of photoexcited molecules with satisfactory accuracy at comparably moderate cost. We apply these methods to study the photophysics and photochemistry of 4-(dimethyl)aminobenzonitrile (DMABN). DMABN is considered the paradigm of photoinduced intramolecular charge transfer (ICT), leading to dual fluorescence in polar solvents. By comparison of calculated emission energies, dipole moments, and vibrational frequencies with recent results from transient spectroscopy measurements, a definitive assignment of the electronic and geometric structure of the two lowest singlet excited states of DMABN is possible for the first time. We investigate the mechanism of the ICT reaction by means of minimum energy path calculations. The results confirm existing state-crossing models of dual fluorescence. Our study suggests that analytical TDDFT derivative methods will be useful to predict and classify emissive properties of other donor-acceptor systems as well. This article was published in J Am Chem Soc and referenced in Journal of Theoretical and Computational Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version