alexa Photosynthetic nutrient-use efficiency in three fast-growing tropical trees with differing leaf longevities.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Hiremath AJ

Abstract Share this page

Abstract Differences in nutrient-use efficiency have been attributed to differences in leaf habit. It has been suggested that evergreens, with their longer-lived leaves, and therefore longer nutrient retention, are more efficient than deciduous species in their use of nutrients. In tropical trees, however, leaf life span is not always a function of whole-tree deciduousness, leading to the proposal that nutrient-use efficiency is better related to leaf life span than to leaf habit. It was predicted that potential photosynthetic nutrient-use efficiency (maximum potential photosynthesis/leaf nutrient content) would decrease with increasing leaf life span, whereas cumulative photosynthetic nutrient-use efficiency (carbon assimilated over a leaf's life span/total nutrients invested in a leaf) would increase with increasing leaf life span. Potential and cumulative photosynthetic nutrient-use efficiencies (with respect to nitrogen and phosphorus) were measured for three fast-growing tropical trees: Cedrela odorata L. (Meliaceae), Cordia alliodora (R. & P.) Cham. (Boraginaceae), and Hyeronima alchorneoides Allemão (Euphorbiaceae). Mean leaf life spans of the three species varied about threefold and ranged from 50 to 176 days. The predictions were partially supported: Cedrela odorata had the shortest-lived leaves and the highest potential nitrogen-use efficiency, whereas Hyeronima alchorneoides had the longest-lived leaves and the highest cumulative nitrogen- and phosphorus-use efficiencies. Potential phosphorus-use efficiency, however, was invariant among species. It is suggested that there are potential tradeoffs between leaf characteristics that lead to high potential and cumulative nutrient-use efficiencies. High potential nutrient-use efficiency may be beneficial in high-nutrient environments, whereas high cumulative nutrient-use efficiency may be of greater benefit to species in low-nutrient environments.
This article was published in Tree Physiol and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 6th World Congress on Biofuels and Bioenergy
    Sep 5-6, 2017 London, UK
  • 6th World Congress on Biopolymers
    September 7-9, 2017 Paris, France
  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version