alexa pH-responsive properties of multilayered poly(L-lysine) hyaluronic acid surfaces.
Chemistry

Chemistry

Journal of Physical Chemistry & Biophysics

Author(s): Burke SE, Barrett CJ

Abstract Share this page

Abstract Multilayer films have been prepared by the sequential electrostatic adsorption of poly(L-lysine) and hyaluronic acid onto charged silicon surfaces from dilute aqueous solutions under various pH conditions. Microelectrophoresis was used to examine the local acid-base equilibria of the polyelectrolytes within the films as a function of the total number of layers in the film and the assembly solution pH. The acid-base dissociation constants were observed to deviate significantly from dilute solution values upon adsorption, to be layer dependent only within the first 3-4 layers, and to show sensitivity to the assembly solution pH. As a result, some of the physicochemical properties of the films have also been found to exhibit pH-responsive behavior. For example, the thickest films result when at least one of the polyelectrolytes is only partially dissociated in solution. As well, the pH-dependent degree of dissociation of the surface functional groups can be used to vary the contact angle of a water droplet by as much as 25 degrees and the coefficient of friction by up to an order of magnitude. In addition, the extent to which PLL/HA films can be made to swell in solution can be varied by a factor of 7 depending on the assembly solution and swelling solution pH. The anomalies found in the dissociation constants account for the trends in these pH-dependent properties. Here, we demonstrate that knowledge of the acid-base dissociation behavior in multilayer films is key to understanding and controlling the physical properties of the films, particularly surface friction and wettability, which are fundamentally important factors for many biomaterials applications. For example, we outline a mechanism whereby biopolymer thin films can be electrostatically adsorbed under highly charged "sticky" conditions and then quickly transformed into stable low-friction films simply by altering the pH environment. This article was published in Biomacromolecules and referenced in Journal of Physical Chemistry & Biophysics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords