alexa Phylogeny of the Acanthocephala based on morphological characters.
Veterinary Sciences

Veterinary Sciences

Journal of Veterinary Science & Technology

Author(s): Monks S

Abstract Share this page

Abstract Only four previous studies of relationships among acanthocephalans have included cladistic analyses, and knowledge of the phylogeny of the group has not kept pace with that of other taxa. The purpose of this study is to provide a more comprehensive analysis of the phylogenetic relationships among members of the phylum Acanthocephala using morphological characters. The most appropriate outgroups are those that share a common early cell-cleavage pattern (polar placement of centrioles), such as the Rotifera, rather than the Priapulida (meridional placement of centrioles) to provide character polarity based on common ancestry rather than a general similarity likely due to convergence of body shapes. The phylogeny of 22 species of the Acanthocephala was evaluated based on 138 binary and multistate characters derived from comparative morphological and ontogenetic studies. Three assumptions of cement gland structure were tested: (i) the plesiomorphic type of cement glands in the Rotifera, as the sister group, is undetermined; (ii) non-syncytial cement glands are plesiomorphic; and (iii) syncytial cement glands are plesiomorphic. The results were used to test an early move of Tegorhynchus pectinarius to Koronacantha and to evaluate the relationship between Tegorhynchus and Illiosentis. Analysis of the data-set for each of these assumptions of cement gland structure produced the same single most parsimonious tree topology. Using Assumptions i and ii for the cement glands, the trees were the same length (length = 404 steps, CI = 0.545, CIX = 0.517, HI = 0.455, HIX = 0.483, RI = 0.670, RC = 0.365). Using Assumption iii, the tree was three steps longer (length = 408 steps, CI = 0.539, CIX = 0.512, HI = 0.461, HIX = 0.488, RI = 0.665, RC = 0.359). The tree indicates that the Palaeacanthocephala and Eoacanthocephala both are monophyletic and are sister taxa. The members of the Archiacanthocephala are basal to the other two clades, but do not themselves form a clade. The results provide strong support for the Palaeacanthocephala and the Eoacanthocephala and the hypothesis that the Eoacanthocephala is the most primitive group is not supported. Little support for the Archiacanthocephala as a monophyletic group was provided by the analysis. Support is provided for the recognition of Tegorhynchus and Illiosentis as distinct taxa, as well as the transfer of T. pectinarius to Koronacantha.
This article was published in Syst Parasitol and referenced in Journal of Veterinary Science & Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th Global Veterinary Summit
    November 16-17, 2017 Las Vegas, USA
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

n[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords