alexa Phylogeography of the Mekong mud snake (Enhydris subtaeniata): the biogeographic importance of dynamic river drainages and fluctuating sea levels for semiaquatic taxa in Indochina.
General Science

General Science

Forest Research: Open Access

Author(s): Lukoschek V, Osterhage JL, Karns DR, Murphy JC, Voris HK

Abstract Share this page

Abstract During the Cenozoic, Southeast Asia was profoundly affected by plate tectonic events, dynamic river systems, fluctuating sea levels, shifting coastlines, and climatic variation, which have influenced the ecological and evolutionary trajectories of the Southeast Asian flora and fauna. We examined the role of these paleogeographic factors on shaping phylogeographic patterns focusing on a species of semiaquatic snake, Enhydris subtaeniata (Serpentes: Homalopsidae) using sequence data from three mitochondrial fragments (cytochrome b, ND4, and ATPase-2785 bp). We sampled E. subtaeniata from seven locations in three river drainage basins that encompassed most of this species' range. Genetic diversities were typically low within locations but high across locations. Moreover, each location had a unique suite of haplotypes not shared among locations, and pairwise φ(ST) values (0.713-0.998) were highly significant between all location pairs. Relationships among phylogroups were well resolved and analysis of molecular variance (AMOVA) revealed strong geographical partitioning of genetic variance among the three river drainage basins surveyed. The genetic differences observed among the populations of E. subtaeniata were likely shaped by the Quaternary landscapes of Indochina and the Sunda Shelf. Historically, the middle and lower Mekong consisted of strongly dissected river valleys separated by low mountain ranges and much of the Sunda Shelf consisted of lowland river valleys that served to connect faunas associated with major regional rivers. It is thus likely that the contemporary genetic patterns observed among populations of E. subtaeniata are the result of their histories in a complex terrain that created abundant opportunities for genetic isolation and divergence yet also provided lowland connections across now drowned river valleys.
This article was published in Ecol Evol and referenced in Forest Research: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords