alexa Physico-chemical study for zinc removal and recovery onto native chemically modified Aspergillus flavus NA9 from industrial effluent.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Aftab K, Akhtar K, Jabbar A, Bukhari IH, Noreen R

Abstract Share this page

Abstract Zinc biosorption characteristic of locally isolated Aspergillus flavus NA9 were examined as a function of pH, temperature, pulp density, contact time and initial metal ion concentration. The maximum zinc uptake was found to be 287.8 ± 11.1 mg g(-1) with initial metal concentration 600 mg L(-1) at initial pH 5.0 and temperature 30 °C. The equilibrium data gave good fits to Freundlich and Florry models with correlation coefficient value of 0.98. The contribution of the functional groups and lipids to zinc biosorption as identified by chemical pretreatment was in the order: carboxylic acids > hydroxyl > amines > lipids. The mechanism of biosorption was also studied using Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The biosorbent was regenerated using 0.01 M HCl with 83.3\% elution efficiency and was reused for five sorption-desorption cycles with 23.5\% loss in biosorption capacity. The order of co-cations showing increased inhibitions of zinc uptake by A. flavus NA9 was Pb > Cu > Mn > Ni. The biosorption assays conducted with actual paint industry effluents revealed efficiency of 88.7\% for Zn (II) removal by candidate biomass. Copyright © 2013 Elsevier Ltd. All rights reserved. This article was published in Water Res and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version