alexa Physiological assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Bauters C, Asahara T, Zheng LP, Takeshita S, Bunting S,

Abstract Share this page

Abstract This study was designed to assess the physiological consequences of augmented vascularity induced by administration of vascular endothelial growth factor (VEGF), an endothelial cell-specific mitogen, in a rabbit model of hindlimb ischemia. Ten days after excision of the common and superficial femoral arteries from one hindlimb of 24 New Zealand White rabbits, VEGF (n = 15) or saline (control; n = 9) was selectively injected into the ipsilateral internal iliac artery. Limb perfusion was evaluated immediately pre-VEGF (baseline) and again at days 10 and 30. A Doppler guide wire was advanced to the internal iliac artery to record flow velocity at rest and at maximum flow velocity provoked by intra-arterial injection of papaverine. At baseline and at day 10, no differences in flow parameters were observed between the control and the VEGF-treated animals. By day 30, however, flow at rest (P < 0.05), maximum flow velocity (P < 0.001), and maximum blood flow (P < 0.001) were all significantly higher in the VEGF-treated group. These physiological findings complement previous-anatomic studies by providing evidence that a single intra-arterial bolus of VEGF augments flow, particularly maximum flow, in the rabbit ischemic hindlimb. These data thus support the notion that VEGF administration represents a potential treatment strategy for certain patients with lower extremity ischemia.
This article was published in Am J Physiol and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords