alexa Pirital virus (Arenaviridae) infection in the syrian golden hamster, Mesocricetus auratus: a new animal model for arenaviral hemorrhagic fever.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Xiao SY, Zhang H, Yang Y, Tesh RB

Abstract Share this page

Abstract Adult Syrian golden hamsters inoculated intraperitoneally with Pirital virus, a recently discovered member of the Tacaribe complex of New World arenaviruses, developed a progressively severe, fatal illness with many of the pathologic features observed in fatal human cases of Lassa fever and other arenaviral hemorrhagic fevers. Most of the animals became moribund by Day 5 and were dead by Day 7 after inoculation. The most consistent histopathologic changes included interstitial pneumonitis, splenic lymphoid depletion and necrosis, and multifocal hepatic necrosis without significant inflammatory cell infiltration. The liver changes ranged from single cell death by apoptosis to coagulative necrosis of clusters of hepatocytes. Immunohistochemical studies of the liver demonstrated the presence and accumulation ot Pirital virus antigen within hepatocytes as well as Kupffer cells. An in situ terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay showed progressively increasing apoptotic activity in the liver of infected hamsters. A human hepatoblastoma cell line (Hep G2/C3A) inoculated with Pirital virus also developed progressive cell destruction and accumulation of viral antigen, as demonstrated by immunofluorescence. Results of this pilot study suggest that the Pirital virus-hamster model is a very promising new small animal model for studying the pathogenesis of arenavirus infections, particularly, the mechanism of direct virus-induced hepatic injury. It may also be useful for testingantiviral agents for treatment of arenaviral hemorrhagic fevers.
This article was published in Am J Trop Med Hyg and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

  • X. Gomez
    Feasibility of biofuels production: combining H2-CH4 and lipid production from food wastes using mixed anaerobic microflora
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords