alexa PKCdelta alternatively spliced isoforms modulate cellular apoptosis in retinoic acid-induced differentiation of human NT2 cells and mouse embryonic stem cells.


Journal of Alzheimers Disease & Parkinsonism

Author(s): Patel NA, Song SS, Cooper DR

Abstract Share this page

Abstract NT2 cells are a human teratocarcinoma cell line that, upon treatment with retinoic acid (RA), begin differentiating into a neuronal phenotype. The transformation of undifferentiated NT2 cells into hNT neurons presents an opportunity to investigate the mechanisms involved in neurogenesis because a key component is cell apoptosis, which is essential for building neural networks. Protein kinase Cdelta (PKCdelta) plays an important role as a mediator of cellular apoptosis in response to various stimuli. PKCdelta (deltaI) is proteolytically cleaved at its hinge region (V3) by caspase 3 and the catalytic fragment is sufficient to induce apoptosis in various cell types. Mouse PKCdeltaII is rendered caspase resistant due to an insertion of 78 bp within the caspase recognition site in its V3 domain. No functional role has been attributed to these alternatively spliced variants of PKCdelta. We sought to find a correlation between the onset of apoptosis, neurogenesis, and the expression of PKCdelta isoforms. Our results indicate that RA regulates the expression of PKCdelta alternative splicing variants in NT2 cells. Further, overexpression of PKCdeltaI promotes apoptosis while PKCdeltaII overexpression shields the cells from apoptosis. This is the first report to attribute physiological function to PKCdeltaI and -deltaII isoforms. Next we demonstrated that mouse embryonic stem cells differentiate in vitro into dopaminergic neurons upon stimulation with RA and ciliary neurotrophic factor. These cells showed a simultaneous increase in tyrosine hydroxylase and PKCdeltaII expression. We suggest that the molecular mechanisms regulating differentiation and apoptosis could be understood by alternative expression of PKCdelta isoforms.
This article was published in Gene Expr and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version