alexa PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2.
Biochemistry

Biochemistry

Biochemistry & Physiology: Open Access

Author(s): Bhunia AK, Piontek K, Boletta A, Liu L, Qian F,

Abstract Share this page

Abstract Autosomal dominant polycystic kidney disease is characterized by cyst formation in the kidney and other organs and results from mutations of PKD1 or PKD2. Previous studies suggest that their gene products have an important role in growth regulation. We now show that expression of polycystin-1 activates the JAK-STAT pathway, thereby upregulating p21(waf1) and inducing cell cycle arrest in G0/G1. This process requires polycystin-2, a channel protein, as an essential cofactor. Mutations that disrupt polycystin-1/2 binding prevent activation of the pathway. Mouse embryos lacking Pkd1 have defective STAT1 phosphorylation and p21(waf1) induction. These results suggest that one function of the polycystin-1/2 complex is to regulate the JAK/STAT pathway and explain how mutations of either gene can result in dysregulated growth.
This article was published in Cell and referenced in Biochemistry & Physiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  •  2nd International Conference on Biochemistry
    Sep 21-22, 2017, Macau, Hong Kong

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords