alexa Plant-based strategies towards minimising 'livestock's long shadow'.
Environmental Sciences

Environmental Sciences

International Journal of Waste Resources

Author(s): KingstonSmith AH, Edwards JE, Huws SA, Kim EJ, Abberton M

Abstract Share this page

Abstract Ruminant farming is an important component of the human food chain. Ruminants can use offtake from land unsuitable for cereal crop cultivation via interaction with the diverse microbial population in their rumens. The rumen is a continuous flow fermenter for the digestion of ligno-cellulose, with microbial protein and fermentation end-products incorporated by the animal directly or during post-ruminal digestion. However, ruminal fermentation is inefficient in capturing the nutrient resource presented, resulting in environmental pollution and generation of greenhouse gases. Methane is generated as a consequence of ruminal fermentation and poor retention of ingested forage nitrogen causes nitrogenous pollution of water and land and contributes to the generation of nitrous oxide. One possible cause is the imbalanced provision of dietary substrates to the rumen micro-organisms. Deamination of amino acids by ammonia-producing bacteria liberates ammonia which can be assimilated by the rumen bacteria and used for microbial protein synthesis. However, when carbohydrate is limiting, microbial growth is slow, meaning low demand for ammonia for microbial protein synthesis and excretion of the excess. Protein utilisation can therefore be improved by increasing the availability of readily fermentable sugars in forage or by making protein unavailable for proteolysis through complexing with plant secondary products. Alternatively, realisation that grazing cattle ingest living cells has led to the discovery that plant cells undergo endogenous, stress-mediated protein degradation due to the exposure to rumen conditions. This presents the opportunity to decrease the environmental impact of livestock farming by using decreased proteolysis as a selection tool for the development of improved pasture grass varieties. This article was published in Proc Nutr Soc and referenced in International Journal of Waste Resources

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords