alexa Plasma membrane-cell wall adhesion is required for expression of plant defense responses during fungal penetration.
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Mellersh DG, Heath MC

Abstract Share this page

Abstract Fungal pathogens almost invariably trigger cell wall-associated defense responses, such as extracellular hydrogen peroxide generation and callose deposition, when they attempt to penetrate either resistant or susceptible plant cells. In the current study, we provide evidence that the expression of these defenses is dependent on adhesion between the plant cell wall and the plasma membrane. Peptides containing an Arg-Gly-Asp (RGD) motif, which interfered with plasma membrane-cell wall adhesion as shown by the loss of the thin plasma membrane-cell wall connections known as Hechtian strands, reduced the expression of cell wall-associated defense responses during the penetration of nonhost plants by biotrophic fungal pathogens. This reduction was associated with increased fungal penetration efficiency. Neither of these effects was seen after treatment with similar peptides lacking the RGD motif. Disruption of plant microfilaments had no effect on Hechtian strands but mimicked the effect of RGD peptides on wall defenses, suggesting that the expression of cell wall-associated defenses involves communication between the plant cell wall and the cytosol across the plasma membrane. To visualize the state of the plasma membrane-cell wall interaction during fungal penetration, we observed living cells during sucrose-induced plasmolysis. In interactions that were characterized by the early expression of cell wall-associated defenses, there was no change, or an increase, in plasma membrane-cell wall adhesion under the penetration point as the fungus grew through the plant cell wall. In contrast, for rust fungus interactions with host plants, there was a strong correlation between a lack of cell wall-associated defenses and a localized decrease in plasma membrane-cell wall adhesion under the penetration point. Abolition of this localized decreased adhesion by previous inoculation with a fungus that increased plasma membrane-cell wall adhesion resulted in reduced penetration by the rust fungus and induction of cell wall-associated defenses. These results suggest that rust fungi may induce a decrease in plasma membrane-cell wall adhesion as a means of disrupting the expression of nonspecific defense responses during penetration of host cells.
This article was published in Plant Cell and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords