alexa Pleiotropy and principal components of heritability combine to increase power for association analysis.
Genetics

Genetics

Advancements in Genetic Engineering

Author(s): Klei L, Luca D, Devlin B, Roeder K

Abstract Share this page

Abstract When many correlated traits are measured the potential exists to discover the coordinated control of these traits via genotyped polymorphisms. A common statistical approach to this problem involves assessing the relationship between each phenotype and each single nucleotide polymorphism (SNP) individually (PHN); and taking a Bonferroni correction for the effective number of independent tests conducted. Alternatively, one can apply a dimension reduction technique, such as estimation of principal components, and test for an association with the principal components of the phenotypes (PCP) rather than the individual phenotypes. Building on the work of Lange and colleagues we develop an alternative method based on the principal component of heritability (PCH). For each SNP the PCH approach reduces the phenotypes to a single trait that has a higher heritability than any other linear combination of the phenotypes. As a result, the association between a SNP and derived trait is often easier to detect than an association with any of the individual phenotypes or the PCP. When applied to unrelated subjects, PCH has a drawback. For each SNP it is necessary to estimate the vector of loadings that maximize the heritability over all phenotypes. We develop a method of iterated sample splitting that uses one portion of the data for training and the remainder for testing. This cross-validation approach maintains the type I error control and yet utilizes the data efficiently, resulting in a powerful test for association. This article was published in Genet Epidemiol and referenced in Advancements in Genetic Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • International Conference on Epigenetics 2017
    November 13-15, 2017 Frankfurt, Germany
  • International Conference on Genetic Counseling and Genomic Medicine
    February 12-13, 2018 Madrid, Spain

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords