alexa Polarizable force fields.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Halgren TA, Damm W

Abstract Share this page

Abstract Standard force fields used in biomolecular computing describe electrostatic interactions in terms of fixed, usually atom-centered, charges. Real physical systems, however, polarize substantially when placed in a high-dielectric medium such as water--or even when a strongly charged system approaches a neutral body in the gas phase. Such polarization strongly affects the geometry and energetics of molecular recognition. First introduced more than 20 years ago, polarizable force fields seek to account for appropriate variations in charge distribution with dielectric environment. Over the past five years, an accelerated pace of development of such force fields has taken place on systems ranging from liquid water to metalloenzymes. Noteworthy progress has been made in better understanding the capabilities and limitations of polarizable models for water and in the formulation and utilization of complete specifically parameterized polarizable force fields for peptides and proteins.
This article was published in Curr Opin Struct Biol and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version