alexa Polarization and reprogramming of myeloid-derived suppressor cells.


Journal of Cell Signaling

Author(s): Yang WC, Ma G, Chen SH, Pan PY

Abstract Share this page

Abstract Myeloid-derived suppressor cells (MDSC) have recently emerged as one of the central regulators of the immune system. In recent years, interest in understanding MDSC biology and applying MDSC for therapeutic purpose has exploded exponentially. Despite recent progress in MDSC biology, the mechanisms underlying MDSC development from expansion and activation to polarization in different diseases remain poorly understood. More recent studies have demonstrated that two MDSC subsets, M (monocytic)-MDSC and G (granulocytic)-MDSC, are able to polarize from a classically activated phenotype (M1) to an alternatively activated one (M2), or vice versa, in tumor-bearing mice. This phenotypic polarization affects MDSC function and disease progression. In this article, we summarize and discuss polarization, mechanism and therapeutic potential of MDSC. An emphasis is placed on the emerging concept of reprogramming MDSC polarization as a therapeutic strategy.
This article was published in J Mol Cell Biol and referenced in Journal of Cell Signaling

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version