alexa Pollutant removal within hybrid constructed wetland systems in tropical regions.
Engineering

Engineering

Journal of Civil & Environmental Engineering

Author(s): Yeh TY, Wu CH

Abstract Share this page

Abstract Hybrid constructed wetlands have received tremendous interests for water quality enhancement due to insufficient sewage treatment and groundwater deterioration in Taiwan. The main objectives of this study were to investigate pollutant removal efficiencies and mechanisms within field-scale hybrid natural purification systems. The studied hybrid constructed wetland systems include an oxidation pond, two serial surface flow wetlands with a cascade in between, and a subsurface flow wetland receiving secondary treated dormitory sewage. The average SS, BOD and COD percent removal efficiency was 86.7, 86.5 and 57.8\%, respectively. The ratio of BOD to COD decreased from 0.65 in the initial aerobic compartment to 0.21 in anoxic parts of the systems, indicating most biological degradable materials were decomposed in the aerobic oxidation pond and surface flow wetlands. Heavy metal removal percentages of copper and zinc were 72.9 and 68.3\%, respectively. Sedimentation and plant uptake are the possible sinks for metals retention. Significant phosphorus removal was not achieved in this study. Total Kjeldahl nitrogen (TKN) and ammonium decreased from 4.08 to 1.43 and 3.74 to 1.21 mg/L, respectively, while nitrate nitrogen increased from 1.91 to 3.85 mg/L within the aerobic oxidation pond and surface flow wetlands. This result demonstrated nitrification occurring within aerobic compartments. The nitrate nitrogen continued to decrease from 3.85 to 1.43 mg/L within the anoxic subsurface wetlands mainly through denitrification transformation. Total nitrogen removal was from 7.61 to 3.61 mg/L, with the percentage removal of total nitrogen around 52.6\%. The primary nitrogen removal and transformation mechanisms within the studied wetland systems were nitrification within aerobic followed by denitrificaiton within anaerobic systems. The emergent macrophytes enhance aeration through oxygen transferring that attributing the higher organic matter removal and nitrification rate. The hybrid wetland systems are viable options of pollutants transformation and removal in tropical countries, while tertiary wastewater systems are too costly or unable to operate. Effluent of purified systems can comply with local surface water criteria rendering for groundwater recharge. This article was published in Water Sci Technol and referenced in Journal of Civil & Environmental Engineering

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords