alexa Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Wolfe A, Shimer GH Jr, Meehan T, Wolfe A, Shimer GH Jr, Meehan T, Wolfe A, Shimer GH Jr, Meehan T, Wolfe A, Shimer GH Jr, Meehan T

Abstract Share this page

Abstract We have investigated the physical binding of pyrene and benzo[a]pyrene derivatives to denatured DNA. These compounds exhibit a red shift in their absorbance spectra of 9 nm when bound to denatured calf thymus DNA, compared to a shift of 10 nm when binding occurs to native DNA. Fluorescence from the hydrocarbons is severely quenched when bound to both native and denatured DNA. Increasing sodium ion concentration decreases binding of neutral polycyclic aromatic hydrocarbons to native DNA and increases binding to denatured DNA. The direct relationship between binding to denatured DNA and salt concentration appears to be a general property of neutral polycyclic aromatic hydrocarbons. Absorption measurements at 260 nm were used to determine the duplex content of denatured DNA. When calculated on the basis of duplex binding sites, equilibrium constants for binding of 7,8,9,10-tetrahydroxy-7,8,9,10-tetrahydro-benzo[a]pyrene to denatured DNA are an order of magnitude larger than for binding to native DNA. The effect of salt on the binding constant was used to calculate the sodium ion release per bound ligand, which was 0.36 for both native and denatured DNA. Increasing salt concentration increases the duplex content of denatured DNA, and it appears that physical binding of polycyclic aromatic hydrocarbons consists of intercalation into these sites.
This article was published in Biochemistry and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords