alexa Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Potineni A, Lynn DM, Langer R, Amiji MM

Abstract Share this page

Abstract The main objective of this study was to develop and characterize a pH-sensitive biodegradable polymeric nanoparticulate system for tumor-selective paclitaxel delivery. A representative hydrophobic poly(beta-amino ester) (poly-1) was synthesized by conjugate addition of 4,4'-trimethyldipiperidine with 1,4-butanediol diacrylate. Poly-1 (M(n) 10,000 daltons) nanoparticles were prepared by the controlled solvent displacement method in an ethanol-water system in the presence of Pluronic) F-108, a poly(ethylene oxide) (PEO)-containing non-ionic surfactant. Control and PEO-modified nanoparticles were characterized by Coulter counter, scanning electron microscopy (SEM), zeta potential measurements, and electron spectroscopy for chemical analysis (ESCA). Polymer degradation studies were performed in phosphate-buffered saline (PBS, pH 7.4) at 37 degrees C. Paclitaxel loading capacities and efficiencies were determined and release studies were performed in Tween)-80 (0.1\%, w/v)-containing PBS at 37 degrees C. Control and PEO-modified nanoparticles, labeled with rhodamine-123, were incubated with BT-20 cells to examine the uptake and cellular distribution as a function of time. PEO-modified nanoparticles with an average size of 100-150 nm and a positive surface charge of 37.0 mV were prepared. SEM analysis showed distinct smooth, spherical particles. The ether (-C-O-) peak of the C(1s) envelope in ESCA confirmed the surface presence of PEO chains. Polymer biodegradation studies showed that almost 85\% of the starting material degraded after 6 days. The maximum paclitaxel loading efficiency attained was 97\% at 1.0\% (w/w) of the drug. Paclitaxel release studies showed that approximately 10\% was released in the first 24 h, 80\% after 3 days, and the entire content was released in approximately 5 days. After 1 h of incubation, a large fraction of the administered control and PEO-modified poly-1 nanoparticles was internalized in BT-20 cells. Results of this study demonstrate that PEO-modified poly-1 nanoparticles could provide increased therapeutic benefit by delivering the encapsulated drug to solid tumors.
This article was published in J Control Release and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
  • Graphene & 2D Materials
    November 6-7, 2017 Frankfurt, Germany
  • World Congress on Nanoscience and Nano Technology
    October 16-17, 2017 Dubai, UAE
  • World Medical Nanotechnology Congress
    October 18-19, 2017 Osaka, Japan
  • Nanoscienceand Molecular Nanotechnology
    Nov 06-08, 2017 Frankfurt, Germany
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version